If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19t^2+6t-13=0
a = 19; b = 6; c = -13;
Δ = b2-4ac
Δ = 62-4·19·(-13)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-32}{2*19}=\frac{-38}{38} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+32}{2*19}=\frac{26}{38} =13/19 $
| (x+7)/3=1+(3x-2)/5 | | 10m-4=76 | | (6x+7)-(2x-9)X=4 | | -9=g-6 | | 18x-3+4x=3-5+x | | 3x-54=82 | | 9r-—20=47 | | -26-7p=-8(-1+3p) | | y=15+8/9 | | (6y+11)+(3y+26)=180 | | F(8)=2.5(x-7.8) | | 6(d+30)=8 | | -4v-6=-7v-12 | | 52/x=3+2 | | 5(w+10)=6 | | -4v-6=-7-12 | | 4x+12=4x-5 | | 2x+3x=6x+4 | | F(9a)=(9a)+6 | | 2x+7/9x=5/6 | | x5=84 | | g-1=-4 | | x/7–2=3 | | 9w=45;,3,4,5 | | |6n|=60 | | 4(r+7)=52 | | y-13=24;,37,38,39 | | y^2=40-X^2 | | 14l=56 | | 1x0.5x0.2=0.1 | | 5x-10=2x-35 | | 3.2x-9=0.68 |